
Reinforcement Learning in StarCraft: Brood War 

 

  

Abstract 

This project was inspired by the recent advances 
in Starcraft AI research including the highly 
successful Berkeley Overmind agent, winner of 
the 2010 AI Starcraft Competition which 
implemented a genetic algorithm to learn a 
successful micro-management system for certain 
types of units within the game. We have injected 
reinforcement learning (RL) using neural nets 
(NNs) into an open-source Starcraft AI agent in 
place of the heuristics in an attempt to have the 
agent learn a more optimal build order for units. 
Our goals included gaining a deeper 
understanding of machine learning concepts in 
practice in addition to attempting to improve 
upon an already successful Starcraft AI. 

1.  Background 

1.1  Motivation 

Our work was based largely on that of Shantia, Begye, 
and Wiering in their Connectionist Reinforcement 
Learning for Intelligent Unit Micro Management in 
StarCraft. However, where they implemented two online 
learning methods, Q-learning with neural nets and simple 
Q-learning, to learn more optimal policies for controlling 
units during combat, we deferred to an open source agent 
for micromanagement of units. Instead, we focused our 
efforts with similar implementations on learning build 
orders for units given some state. Theoretically, one 
should be able to slowly improve policies for specific 
tasks such as build orders or micromanagement one at a 
time through learning, then incorporate these policies 
together into one much improved agent. 

1.2  BWAPI1 

BWAPI is an open-source API which allows developers 
to inject AI agents directly into the Starcraft: Brood War 
environment, giving the agents full access to every 
command that a real Starcraft player would have access 
to. This API allowed us to train our machine learning 

————— 
1 http://code.google.com/p/bwapi/downloads/list 

agent within the native Starcraft environment thereby 
allowing us to completely avoid simulation. 

1.3  Open-source agents 

The agent chosen for our implementation of 
reinforcement learning in Starcraft was the product of 
University of Alberta’s Computer Science department and 
was moderately successful in the 2010 AI Starcraft 
Competition2. We chose this agent over Berkley 
Overmind agent for several reasons including the 
modularity of the code, as well as the language in which it 
was written. Overmind was extremely fragmented with no 
clear place within the code where we could replace the 
build order. In addition, it was written in Java and so 
required a bridge to interface with BWAPI to control the 
agent. UAlbertaBot, however, contained a Strategy 
Manager class within its combat controller which was 
wholly responsible for choosing which units to build and 
when. This allowed us the option to replace this class with 
our own strategy, learned through RL. Also, it was written 
in C++ which allowed our agent to directly interface with 
BWAPI. 

1.4  Development Environment 

As per BWAPI’s installation instructions, our project was 
developed using Visual C++ 2008 Express Edition for 
primarily two reasons. First, this was the IDE that most of 
the open-source agents were developed in, and by using it 
we avoided compatibility issues. Second, this software 
was free. 

1.5  Version Control 

In order to allow both project members to develop code 
simultaneously, we opted to host our agent as an open 
source project on Google Code3. In addition, the software 
package, TortoiseSVN, provided a GUI for SVN that 
facilitated functions such as updating and committing the 
code. 

1.6  Simplifications 

————— 
2 http://eis.ucsc.edu/StarCraftParticipants#UAlbertaBot 

3 http://code.google.com/p/ou-skynet/ 
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To simplify the learning task, we have made some 
modifications to the environment. Namely, StarCraft 
contains a fog-of-war which limits visibility of 
unexplored areas. To implement our reward function, we 
have enabled a cheat flag which allows our agent perfect 
information of the map. Without this feature, a much 
more sophisticated reward must be developed. In 
addition, we’ve also limited our agent to competing 
against one type of opponent while learning, the Zerg. 
Although it would be simple to include knowledge of the 
opponent’s race in the state space for both 
implementations, we’ve chosen to play against one race 
exclusively to accelerate the learning process. 

2.  Progress 

2.1  NN Proof of Concept 

In order to gain a firm understanding of the process of 
implementing Neural Nets, we first developed a simple 
NN to learn the OR function on binary inputs. This net 

Figure 1. Graphical representation of our Proof of 
Concept Neural Net.  

(shown in Figure 1) consisted of one output node, one 
hidden layer with three nodes (one bias), and one input 
layer with three nodes (one bias). The hidden layer and 
ouput layer both had a sigmoid activation function, and 
the net converged to a very low error model quickly. 

2.2  NN Q-learning Implementation 

2.2.1  NN STRUCTURE 

Our agent learns using a set of four neural networks, one 
for each unit that we can build. Each net takes 33 inputs 
which together comprise the state space. These feed 
through seven hidden nodes to a single output: our 
estimated Q value. 

The weights are updated throughout the game, and written 
to a file at the end. In this way they are made to persist 
from one game to the next. If no file is available for a  

Figure 2. Errors for a Neural Net learning the OR 
function. 

given net, it is initialized with random weights, taken 
from a Gaussian distribution between -1 and 1.  

2.2.2  Q-LEARNING 

 

 Algorithm 1 Q-learning 
 
 repeat 
obtain st 
choose at using π(st) 
Observe rt+1 and st+1 
Q(st, at)  Q(st, at) + α[rt+1 + γ maxi 𝜖 A Q(st+1, i) - Q(st, at)] 
until Q(st, at) converges 
 

Every 20 seconds or so, our neural nets update themselves 
based on the Q-learning algorithm. This algorithm is 
shown above and involves updating each weight based on 
the actual reward received; the maximum value of the 
policy for any action; and the previous policy value from 
when the action was chosen. 

2.2.3  STATE SPACE 

Our state space is made up of 32 variables: 

• Total number of units we control 

• Available build capacity 

• How many of each of 28 units types we control 

• Log10( Minerals ) 

• Log10( Vespene Gas ) 

Build capacity refers is the number of units that we can 
control at a time, minus the number we actually have. 
Minerals and Vespene Gas are the resources used to 
create new units or buildings.  

This state representation captures everything that we want 
to know about the current game state, although it contains 
a lot of extraneous details. As described below, the state 
space for our simple Q-Learning agent is much simpler, 
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and it seems to perform slightly better than this 
implementation. 

2.2.4  REWARD FUNCTION 

Our reward function is fairly simple at this point. We 
simply take the number of units and buildings that we 
control, and subtract the number of units and buildings 
controlled by our opponent. This is a fairly good way to 
boil a game state down to a single number, since the 
player with the biggest army is usually winning, and a 
player with no units or buildings at all has lost. However, 
this does reward our agent for building more probes 
(cheap, resource-gathering units that cannot fight well) 
than it probably needs. We might refine this later, perhaps 
by valuing our probes lower than other units, and/or 
giving the agent a bonus for winning the game. 

2.3  Simple Q-learning Implementation 

2.3.1  STATE SPACE REPRESENTATION 

The state space representation for our Simple Q-learning 
agent was much simpler than that of our NN agent. We 
have divided the space with four binary classifiers (Does 
enemy have cloaked units, Does enemy have flying units, 
Can we see cloaked units, Can we shoot flying units) and 
two variables with five bins for minerals and vespene gas. 
The bins are less than 10, 11-100, 101-1000, over 1000 
for both minerals and gas. In each of these 2*2*2*2*5*5 
= 400 zones we randomly assigned a Q-value for each of 
the four actions available (build Zealot, build Dragoon, 
build Dark Templar, build Observer), and these Q-values 
are updated using the learning algorithm above. 

2.3.2  REWARD FUNCTION 

The reward function used for our simple Q-learning agent 
was the same as that used for the NN Q-learning 
implementation. Namely, we’re rewarding the agent by 
the number of units and buildings we control minus the 
number of buildings and units the opponent controls 

2.4  NN Q-learning Results 

We tested different values of alpha (learning rate) to see 
what effect this had on our agent’s performance. As you 
can see in figures 3 and 4 below, our reward function 
bounced around more or less randomly, although an alpha 
of 10-5 seems to work better than 10-7. However, in both 
cases, the win ratio improved as time went on (figure 5). 
This suggests that our reward function does not correlate 
that strongly with whether the agent wins or loses a game, 
as indeed it does not, as shown in figure 6. We will 
examine possible explanations for this behavior later, as 
well as what it means for possible future work. 

Figures 3 and 4. Average reward received over the course 
of a game as a function of number of games played. As 
you can see, there is no general trend up or down. 

Figure 5. As you can see in the graph, the win percentage 
increases as the agent gains experience; thus the agent is 
learning. 
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Figure 6. This graph show that the behavior we expect to 
see, namely observing a much higher reward for the 
games where the agent wins, is missing. Instead, the 
average reward for games where the agent won and loss 
are very near, 30.6 for losses and 37 for wins. 

 

2.5  Simple Q-learning Results 

As for the Neural Net implementation, we tested the 
simple Q-learning agent with several values of alpha. 
Again, the agent’s average reward function did not 
increase over time (shown in figure 7), but the cumulative 
win loss ratio did (as seen in figure 8). Again, we 
hypothesize that this is a result of the stochasticity of the 
environment, and the fact that a high reward function does 
not correlate well with victory. 

 

Figure 7. This graph show that the behavior we expect to 
see, namely observing a much higher reward for the 
games where the agent wins, is missing. Instead, the 
average reward for games where the agent won and loss 
are very near, 30.6 for losses and 37 for wins. 

 

 

 

Figure 8. Again, the agent’s performance increased with 
experienced, verifying that the agent was learning. 

 

2.6  Comparison 

While there was no strong correlation between the 
rewards being received and win percentage for either 
implementation, it is obvious that both agents are learning 
via their cumulative win percentages. One possible 
explanation for this behavior is the stochasticity of the 
environment. For example, our current reward function 
increases as we gain buildings and units and decreases as 
the opponent gains buildings and units. However, in 
several of the learning trials we observed that the agent 
would converge to a policy of building as many of the 
cheapest fighting unit as fast as possible. While this 
strategy does tend to do reasonably well (resulting in an 
97% win ratio in one of our simple Q-learning 
experiments), it doesn’t result in a high average reward 
over the course of the game since the agent ends the game 
quickly without building many units. 

Another thing that we notice is that the simple Q-learning 
agent outperformed the NN implementation. We 
hypothesize that this resulted from the additional 
information given to the simple agent, namely the 
knowledge of enemy units such as flyers and cloaked 
units and our capacity to fight them. A combination of the 
implementations where Q values are approximated using 
Neural Net but with more appropriate input variables may 
outperform either individual implementation. 

It is also interesting to examine the actual learning rates of 
the two implementations. The NN implementation 
achieved a win percentage of 80% after approximately 
200 games, but the simple Q-learning agent hit 80% win 
percentage after only 10 games. We suspect this is 
because of the much simpler state space representation 
found in the simple Q-learning agent. 

 

30.6) 
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2.7  Conclusion 

While there is certainly room for improvement in both of 
our agents, we were pleased to see both of their 
performances improve over time. It appears that as long 
as it captures the most important information, a simpler 
state space is better than a more complex one (as 
evidenced by the superior performance f the simple Q-
learning agent). We also found that although our reward 
function is not that strongly correlated with actually 
winning the game, our agents still improved their win 
rates over time by trying to maximize that reward. 

StarCraft is a very complicated environment, with many 
stochastic variables that affect the outcome of the game. 
For instance, at the beginning of each game, our agent 
sends a resource gathering unit to the enemy base, and 
tells it to attack their gatherers. Sometimes the enemy 
drones can gang up and kill our scot; other times they 
chase I around for up to a minute or two, completely 
neglecting their other duties. We feel that this wasted time 
is the single most important factor in whether our agent 
wins or loses, since it always wins almost immediately if 
the enemy drones are distracted for more than about 45 
seconds. We feel that our inability to account for variables 
like this has been the biggest limiting factor on the 
learning of both of our agents. 

3.  Next Steps 

3.1  Improve Reward Function 

As described earlier, one promising avenue for 
improvement is refining our reward function. Having a lot 
of probes is beneficial, but toward the end of the game we 
would ideally be turning our resource advantage (from 
having so many gatherers) into fighting units. 

3.2  Refine NN Implementation 

We really only need to train observers (flying units which 
can see invisible enemies) if our opponent has lurkers 
(units which borrow underground to attack while 
invisible); hence, we should probably feed the number of 
enemy lurkers into the nets, and see if our agent will learn 
a more sophisticated observer-building policy as was 
observed in the simple Q-learning implementation. In 
addition, the NN agent would likely do better with 
knowledge of enemy flying units. 

3.3  Experiment with Parameters 

There are several parameters hard-coded into the agent, 
and we could experiment with any of these. We might try 
changing the epsilon value (how likely the agent is to take 
a random action at a given timestep) throughout the game. 

Perhaps it is best to explore early, and stick more closely 
to our policy later in the game. Maybe instead of the 
course of a game, we should change epsilon over the 
course of the agent's lifetime, reducing the value by some 
step at the start of every game. We could also adjust the 
learning rate and discount rate of the neural nets. 
Increasing alpha might cause the agent to learn faster, but 
if it is too high our policy will not converge. The discount 
rate affects how highly we value predicted future rewards. 
It seems worth investigating whether we can get a better 
policy by raising or lowering this value.  


