
Reinforcement Learning in StarCraft: Brood War

Abstract

This project was inspired by the recent advances
in Starcraft AI research including the highly
successful Berkeley Overmind agent, winner of
the 2010 AI Starcraft Competition which
implemented a genetic algorithm to learn a
successful micro-management system for certain
types of units within the game. We have injected
reinforcement learning (RL) using neural nets
(NNs) into an open-source Starcraft AI agent in
place of the heuristics in an attempt to have the
agent learn a more optimal build order for units.
Our goals included gaining a deeper
understanding of machine learning concepts in
practice in addition to attempting to improve
upon an already successful Starcraft AI.

1. Background

1.1 Motivation

Our work was based largely on that of Shantia, Begye,
and Wiering in their Connectionist Reinforcement
Learning for Intelligent Unit Micro Management in
StarCraft. However, where they implemented two online
learning methods, Q-learning with neural nets and simple
Q-learning, to learn more optimal policies for controlling
units during combat, we deferred to an open source agent
for micromanagement of units. Instead, we focused our
efforts with similar implementations on learning build
orders for units given some state. Theoretically, one
should be able to slowly improve policies for specific
tasks such as build orders or micromanagement one at a
time through learning, then incorporate these policies
together into one much improved agent.

1.2 BWAPI1

BWAPI is an open-source API which allows developers
to inject AI agents directly into the Starcraft: Brood War
environment, giving the agents full access to every
command that a real Starcraft player would have access
to. This API allowed us to train our machine learning

—————
1 http://code.google.com/p/bwapi/downloads/list

agent within the native Starcraft environment thereby
allowing us to completely avoid simulation.

1.3 Open-source agents

The agent chosen for our implementation of
reinforcement learning in Starcraft was the product of
University of Alberta’s Computer Science department and
was moderately successful in the 2010 AI Starcraft
Competition2. We chose this agent over Berkley
Overmind agent for several reasons including the
modularity of the code, as well as the language in which it
was written. Overmind was extremely fragmented with no
clear place within the code where we could replace the
build order. In addition, it was written in Java and so
required a bridge to interface with BWAPI to control the
agent. UAlbertaBot, however, contained a Strategy
Manager class within its combat controller which was
wholly responsible for choosing which units to build and
when. This allowed us the option to replace this class with
our own strategy, learned through RL. Also, it was written
in C++ which allowed our agent to directly interface with
BWAPI.

1.4 Development Environment

As per BWAPI’s installation instructions, our project was
developed using Visual C++ 2008 Express Edition for
primarily two reasons. First, this was the IDE that most of
the open-source agents were developed in, and by using it
we avoided compatibility issues. Second, this software
was free.

1.5 Version Control

In order to allow both project members to develop code
simultaneously, we opted to host our agent as an open
source project on Google Code3. In addition, the software
package, TortoiseSVN, provided a GUI for SVN that
facilitated functions such as updating and committing the
code.

1.6 Simplifications

—————
2 http://eis.ucsc.edu/StarCraftParticipants#UAlbertaBot

3 http://code.google.com/p/ou-skynet/

Reinforcement Learning in StarCraft: Brood War

To simplify the learning task, we have made some
modifications to the environment. Namely, StarCraft
contains a fog-of-war which limits visibility of
unexplored areas. To implement our reward function, we
have enabled a cheat flag which allows our agent perfect
information of the map. Without this feature, a much
more sophisticated reward must be developed. In
addition, we’ve also limited our agent to competing
against one type of opponent while learning, the Zerg.
Although it would be simple to include knowledge of the
opponent’s race in the state space for both
implementations, we’ve chosen to play against one race
exclusively to accelerate the learning process.

2. Progress

2.1 NN Proof of Concept

In order to gain a firm understanding of the process of
implementing Neural Nets, we first developed a simple
NN to learn the OR function on binary inputs. This net

Figure 1. Graphical representation of our Proof of
Concept Neural Net.

(shown in Figure 1) consisted of one output node, one
hidden layer with three nodes (one bias), and one input
layer with three nodes (one bias). The hidden layer and
ouput layer both had a sigmoid activation function, and
the net converged to a very low error model quickly.

2.2 NN Q-learning Implementation

2.2.1 NN STRUCTURE

Our agent learns using a set of four neural networks, one
for each unit that we can build. Each net takes 33 inputs
which together comprise the state space. These feed
through seven hidden nodes to a single output: our
estimated Q value.

The weights are updated throughout the game, and written
to a file at the end. In this way they are made to persist
from one game to the next. If no file is available for a

Figure 2. Errors for a Neural Net learning the OR
function.

given net, it is initialized with random weights, taken
from a Gaussian distribution between -1 and 1.

2.2.2 Q-LEARNING

 Algorithm 1 Q-learning

 repeat
obtain st
choose at using π(st)
Observe rt+1 and st+1
Q(st, at)  Q(st, at) + α[rt+1 + γ maxi 𝜖 A Q(st+1, i) - Q(st, at)]
until Q(st, at) converges

Every 20 seconds or so, our neural nets update themselves
based on the Q-learning algorithm. This algorithm is
shown above and involves updating each weight based on
the actual reward received; the maximum value of the
policy for any action; and the previous policy value from
when the action was chosen.

2.2.3 STATE SPACE

Our state space is made up of 32 variables:

• Total number of units we control

• Available build capacity

• How many of each of 28 units types we control

• Log10(Minerals)

• Log10(Vespene Gas)

Build capacity refers is the number of units that we can
control at a time, minus the number we actually have.
Minerals and Vespene Gas are the resources used to
create new units or buildings.

This state representation captures everything that we want
to know about the current game state, although it contains
a lot of extraneous details. As described below, the state
space for our simple Q-Learning agent is much simpler,

Reinforcement Learning in StarCraft: Brood War

and it seems to perform slightly better than this
implementation.

2.2.4 REWARD FUNCTION

Our reward function is fairly simple at this point. We
simply take the number of units and buildings that we
control, and subtract the number of units and buildings
controlled by our opponent. This is a fairly good way to
boil a game state down to a single number, since the
player with the biggest army is usually winning, and a
player with no units or buildings at all has lost. However,
this does reward our agent for building more probes
(cheap, resource-gathering units that cannot fight well)
than it probably needs. We might refine this later, perhaps
by valuing our probes lower than other units, and/or
giving the agent a bonus for winning the game.

2.3 Simple Q-learning Implementation

2.3.1 STATE SPACE REPRESENTATION

The state space representation for our Simple Q-learning
agent was much simpler than that of our NN agent. We
have divided the space with four binary classifiers (Does
enemy have cloaked units, Does enemy have flying units,
Can we see cloaked units, Can we shoot flying units) and
two variables with five bins for minerals and vespene gas.
The bins are less than 10, 11-100, 101-1000, over 1000
for both minerals and gas. In each of these 2*2*2*2*5*5
= 400 zones we randomly assigned a Q-value for each of
the four actions available (build Zealot, build Dragoon,
build Dark Templar, build Observer), and these Q-values
are updated using the learning algorithm above.

2.3.2 REWARD FUNCTION

The reward function used for our simple Q-learning agent
was the same as that used for the NN Q-learning
implementation. Namely, we’re rewarding the agent by
the number of units and buildings we control minus the
number of buildings and units the opponent controls

2.4 NN Q-learning Results

We tested different values of alpha (learning rate) to see
what effect this had on our agent’s performance. As you
can see in figures 3 and 4 below, our reward function
bounced around more or less randomly, although an alpha
of 10-5 seems to work better than 10-7. However, in both
cases, the win ratio improved as time went on (figure 5).
This suggests that our reward function does not correlate
that strongly with whether the agent wins or loses a game,
as indeed it does not, as shown in figure 6. We will
examine possible explanations for this behavior later, as
well as what it means for possible future work.

Figures 3 and 4. Average reward received over the course
of a game as a function of number of games played. As
you can see, there is no general trend up or down.

Figure 5. As you can see in the graph, the win percentage
increases as the agent gains experience; thus the agent is
learning.

Reinforcement Learning in StarCraft: Brood War

Figure 6. This graph show that the behavior we expect to
see, namely observing a much higher reward for the
games where the agent wins, is missing. Instead, the
average reward for games where the agent won and loss
are very near, 30.6 for losses and 37 for wins.

2.5 Simple Q-learning Results

As for the Neural Net implementation, we tested the
simple Q-learning agent with several values of alpha.
Again, the agent’s average reward function did not
increase over time (shown in figure 7), but the cumulative
win loss ratio did (as seen in figure 8). Again, we
hypothesize that this is a result of the stochasticity of the
environment, and the fact that a high reward function does
not correlate well with victory.

Figure 7. This graph show that the behavior we expect to
see, namely observing a much higher reward for the
games where the agent wins, is missing. Instead, the
average reward for games where the agent won and loss
are very near, 30.6 for losses and 37 for wins.

Figure 8. Again, the agent’s performance increased with
experienced, verifying that the agent was learning.

2.6 Comparison

While there was no strong correlation between the
rewards being received and win percentage for either
implementation, it is obvious that both agents are learning
via their cumulative win percentages. One possible
explanation for this behavior is the stochasticity of the
environment. For example, our current reward function
increases as we gain buildings and units and decreases as
the opponent gains buildings and units. However, in
several of the learning trials we observed that the agent
would converge to a policy of building as many of the
cheapest fighting unit as fast as possible. While this
strategy does tend to do reasonably well (resulting in an
97% win ratio in one of our simple Q-learning
experiments), it doesn’t result in a high average reward
over the course of the game since the agent ends the game
quickly without building many units.

Another thing that we notice is that the simple Q-learning
agent outperformed the NN implementation. We
hypothesize that this resulted from the additional
information given to the simple agent, namely the
knowledge of enemy units such as flyers and cloaked
units and our capacity to fight them. A combination of the
implementations where Q values are approximated using
Neural Net but with more appropriate input variables may
outperform either individual implementation.

It is also interesting to examine the actual learning rates of
the two implementations. The NN implementation
achieved a win percentage of 80% after approximately
200 games, but the simple Q-learning agent hit 80% win
percentage after only 10 games. We suspect this is
because of the much simpler state space representation
found in the simple Q-learning agent.

30.6)

Reinforcement Learning in StarCraft: Brood War

2.7 Conclusion

While there is certainly room for improvement in both of
our agents, we were pleased to see both of their
performances improve over time. It appears that as long
as it captures the most important information, a simpler
state space is better than a more complex one (as
evidenced by the superior performance f the simple Q-
learning agent). We also found that although our reward
function is not that strongly correlated with actually
winning the game, our agents still improved their win
rates over time by trying to maximize that reward.

StarCraft is a very complicated environment, with many
stochastic variables that affect the outcome of the game.
For instance, at the beginning of each game, our agent
sends a resource gathering unit to the enemy base, and
tells it to attack their gatherers. Sometimes the enemy
drones can gang up and kill our scot; other times they
chase I around for up to a minute or two, completely
neglecting their other duties. We feel that this wasted time
is the single most important factor in whether our agent
wins or loses, since it always wins almost immediately if
the enemy drones are distracted for more than about 45
seconds. We feel that our inability to account for variables
like this has been the biggest limiting factor on the
learning of both of our agents.

3. Next Steps

3.1 Improve Reward Function

As described earlier, one promising avenue for
improvement is refining our reward function. Having a lot
of probes is beneficial, but toward the end of the game we
would ideally be turning our resource advantage (from
having so many gatherers) into fighting units.

3.2 Refine NN Implementation

We really only need to train observers (flying units which
can see invisible enemies) if our opponent has lurkers
(units which borrow underground to attack while
invisible); hence, we should probably feed the number of
enemy lurkers into the nets, and see if our agent will learn
a more sophisticated observer-building policy as was
observed in the simple Q-learning implementation. In
addition, the NN agent would likely do better with
knowledge of enemy flying units.

3.3 Experiment with Parameters

There are several parameters hard-coded into the agent,
and we could experiment with any of these. We might try
changing the epsilon value (how likely the agent is to take
a random action at a given timestep) throughout the game.

Perhaps it is best to explore early, and stick more closely
to our policy later in the game. Maybe instead of the
course of a game, we should change epsilon over the
course of the agent's lifetime, reducing the value by some
step at the start of every game. We could also adjust the
learning rate and discount rate of the neural nets.
Increasing alpha might cause the agent to learn faster, but
if it is too high our policy will not converge. The discount
rate affects how highly we value predicted future rewards.
It seems worth investigating whether we can get a better
policy by raising or lowering this value.

