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A B S T R A C T

The gut microbiome has a measurable impact on the brain, influencing stress, anxiety, depressive symptoms and
social behaviour. This microbiome–gut–brain axis may be mediated by various mechanisms including neural,
immune and endocrine signalling. To date, the majority of research has been conducted in animal models, while
the limited number of human studies has focused on psychiatric conditions. Here the composition and diversity
of the gut microbiome is investigated with respect to human personality. Using regression models to control for
possible confounding factors, the abundances of specific bacterial genera are shown to be significantly predicted
by personality traits. Diversity analyses of the gut microbiome reveal that people with larger social networks
tend to have a more diverse microbiome, suggesting that social interactions may shape the microbial community
of the human gut. In contrast, anxiety and stress are linked to reduced diversity and an altered microbiome
composition. Together, these results add a new dimension to our understanding of personality and reveal that
the microbiome–gut–brain axis may also be relevant to behavioural variation in the general population as well as
to cases of psychiatric disorders.

1. Introduction

Personality shapes our world. It influences our health, our friend-
ships, how we deal with stress, what jobs we succeed in and how we
like to spend our time. It is approximately 50% heritable in human
populations [1], suggesting that environmental factors also contribute
significantly to our personality. In addition to our external environ-
ment, the burgeoning field of the microbiome is revealing the many
ways that our ‘environment within’ can affect our body’s physiology,
including our digestion, immunity, metabolism, development and even
our behaviour [2–6]. In fact, the number of microbial cells in our bodies
is estimated to be roughly equal to our own human cells [7], with the
majority of these microorganisms inhabiting the gut. Studies in the past
decade provide evidence that the gut microbiome interacts with the
central nervous system [8] and such findings have the potential to aid
the development of new treatments for conditions such as autism [9]
and depression [10]. However, research has largely been conducted in
animal models and it is unknown how translatable these findings are to
humans [11–13]. While there is some indication that dysbiosis of the
gut microbiota may be implicated in neurological and psychiatric dis-
orders [14], an open question remains as to whether variation in the gut
microbial community is related to personality, that is behavioural dif-
ferences between individuals that are consistent over time and different

situations and therefore broadly predictable.
Animal studies have demonstrated that the gut microbiome can

influence the stress response, anxiety and depressive-like behaviours, as
well as social behaviour and communication [6,15]. Some of the most
convincing findings stem from faecal microbiota transplantation
whereby behavioural traits can be transferred between mouse strains
when their gut microbiota are swapped [16,17]. For example, when the
more anxious and timid Balb/c mice are colonized with the gut mi-
crobiota of NIH Swiss mice, their temperament becomes more bold and
exploratory like that of the donor NIH Swiss mice, and vice versa [16].
Further support comes from the induction of anxiety and depressive-
like behaviours in rodents colonized with the gut microbiota of humans
suffering from these symptoms [18–20]. The transmission of such be-
haviours via the microbiota therefore suggests that gut microorganisms
can contribute causally to behavioural traits. In fact, a recent human
study reported improvement in psychiatric symptoms following faecal
microbiota transplantation in patients with gastrointestinal disease
[21].

There are numerous possible mechanisms that may mediate this
interaction between the gut microbial community and the brain, in-
cluding communication via neural, immune and endocrine pathways
[6,22,23]. Microorganisms can also produce various neuroactive che-
micals [24,25] and can modulate host neurotransmitter levels [26]. For
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Table 1
Summary of statistically significant associations between bacterial genera in the gut and behavioural or psychiatric traits, as reported in the literature. Table lists
findings from research in both animal models and human populations and includes all genera (23 in total) associated with these traits in at least two independent
studies.

Genus Change in abundance Behavioural trait/psychiatric condition Study subject References

Akkermansia ↓ Autism Children [52]
↑ Autism Children [53]
↓ Stress Mice [54,55]

Alistipes ↓ Autism Children [56]
↑ Stress Mice [57]
↑ Depression Adults [58,59]

Bacteroides ↑ Autism Children [53,60]
↓ Stress Mice [55,61]
↑ Negative mood Adults [62]
↑ Psychosis Adults [63]

Bifidobacterium ↓ Autism Children [52,53,60,64–67]
↑ Autism Children [68]
↓ Autism Mice [69]
↓ Stress Mice [70,71]
↑ Stress Mice [72]
↑ Negative mood Adults [62]
↓ Depression Adults [73]

Blautia ↓ Autism Infants [74]
↓ Autism Children [75]
↓ Autism Mice [69]
↓ Schizophrenia Adults [76]

Clostridium ↑ Autism Children [53,56,67,75,77–80]
↓ Autism Children [60]
↑ Stress Mice [61,72,81]
↑ Depression Adults [59,82]
↑ Schizophrenia Adults [76]

Collinsella ↑ Autism Children [56]
↓ Autism Children [60]
↑ Schizophrenia Adults [76]

Corynebacterium ↑ Autism Children [56]
↓ Stress Rats [83]

Desulfovibrio ↑ Autism Children [60,80]
Dialister ↓ Autism Children [56,60]

↑ Sociability Infants [84]
↓ Depression Adults [18,59,85]

Dorea ↑ Autism Children [53,56]
↓ Autism Children [75]
↓ Stress Mice [61]

Faecalibacterium ↑ Autism Infants [74]
↓ Autism Children [53,86]
↓ Negative mood Adults [87]
↑ Negative mood Adults [62]
↓ Depression Adults [59,85]
↑ Depression (prenatal) Adults [88]
↓ Bipolar disorder Adults [89,90]

Flavonifractor ↑ Autism Children [75]
↑ Depression Adults [59]

Lactobacillus ↑ Autism Children [56,64,68,80,91]
↓ Autism Children [53]
↓ Stress Mice [61,72,92]
↓ Stress Rats [83]
↓ Stress Macaques [93]
↓ Depression Adults [73]
↑ Psychosis Adults [63]

Lactococcus ↓ Autism Children [53,60]
Oscillibacter ↑ Depression Adults [58]

↑ Stress Rats [83]
Oscillospira ↓ Autism Children [53]

↑ Sociability Mice [94]
↓ Stress Mice [55,94,95]

Parabacteroides ↓ Autism Children [56]
↑ Autism Children [60]
↑ Sociability Infants [84]
↓ Stress Mice [55,61,92,94]
↑ Negative mood Adults [62]
↑ Depression Adults [59]

Prevotella ↑ Autism Children [53]
↓ Autism Children [91]
↑ Stress Mice [94]
↓ Negative mood Adults [62]
↑ Depression Adults [82]
↓ Depression Adults [18]

(continued on next page)
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example, gut bacterial species such as those belonging to the genus
Bacteroides have been shown to produce γ-aminobutyric acid (GABA) in
large quantities in culture [27]. More recently it has been reported that
the relative abundance of Bacteroides is negatively associated with brain
signatures of depression [28], suggesting that bacterially derived GABA
may play a role in the microbiome–gut–brain axis. Gut dysbiosis might
lead to imbalances in neurotransmitters, inflammation or heightened
activity of the hypothalamus–pituitary–adrenal axis that regulates the
stress response [13]. The observation that psychiatric illnesses are often
comorbid with gastrointestinal problems [29,30] supports the role of
the microbiome–gut–brain axis in human biology and psychology. A
number of studies has reported associations between the composition of
the gut microbiome and conditions such as autism, depression and
schizophrenia (Table 1). However, results sometimes differ with regard
to changes in the abundances of specific bacterial taxa, likely due to
individual variability in gut microbiome composition together with
underpowered studies. Furthermore, there is limited understanding of
the mechanisms via which each of these bacterial taxa may affect the
brain. Indeed, the predominant mechanism likely varies depending on
the particular taxon involved, including anti-inflammatory effects, the
production of short chain fatty acids, hormonal effects, the release of
neuroactive metabolites including neurotransmitters and stimulation of
the vagus nerve [23].

Intervention studies in humans have started to investigate whether
the gut microbiome makes a detectable contribution to the functioning
of the central nervous system. Although studies administering probio-
tics have yielded mixed results in humans, meta-analyses do provide
support for their beneficial effect on stress, anxiety and depressive
symptoms, including in healthy humans as well as those suffering from
psychiatric conditions [31–34]. In addition, brain imaging studies have
revealed that consumption of probiotics in healthy volunteers can affect
neural signatures of emotion [35,36]. For example, probiotic adminis-
tration over a period of four weeks was found to modulate brain ac-
tivity, resulting in reduced activity of brain regions involved in emo-
tional processing when participants were presented with negative facial
expressions [35]. In studies involving prebiotics, healthy humans show
a reduction in salivary cortisol levels after three weeks of taking the
supplement [37] and patients with irritable bowel syndrome have re-
ported reduced anxiety following one month of prebiotic supple-
mentation [38].

Since the gut microbiome has been implicated in social develop-
ment and behaviour [39–42], recent research has investigated whether
it may modulate behavioural symptoms of autism [43]. Autism is not
only characterized by impaired social behaviour but is frequently co-
morbid with gastrointestinal issues [44] and immune dysfunction
[45,46]. Studies comparing autistic individuals with neurotypical con-
trols often report significant differences in gut microbiome composition
(Table 1). Interestingly, a trial of faecal microbiota transplantation in

children with autism found that it improved not only gastrointestinal
symptoms but also social behaviour and communication [47], including
two years after completion of the treatment [48]. This suggests that the
gut microbial community may play a part in the expression of autistic
behavioural traits. Given the evidence that autistic traits are normally
distributed across the population [49–51], gut microbiome composition
may also be related to variation in sociability in the general population.

The main aim of this research was to determine whether individual
variation in the composition and diversity of the human gut micro-
biome is related to differences in personality. Previous research has
focused on animal models or examined broadscale associations between
microbiome composition and psychiatric symptoms. In contrast, here
targeted regression analyses were conducted to investigate the re-
lationship between personality traits and the abundances of specific
bacterial genera identified in the microbiome–gut–brain axis literature
(Table 1). It is hypothesized here that genera previously associated with
autism may be related to differences in sociability in the general po-
pulation, while genera previously linked to depression and stress in
animalmodels or psychiatric populations may be differentially abun-
dant in the general population with respect to neurotic traits. As well as
assessing genus-level composition, the relationship between personality
and measures of microbiome diversity was also investigated, with the
hypothesis that variables assessing sociability may be positively related
to diversity and those assessing neurotic traits may be negatively re-
lated.

2. Materials and methods

2.1. Study population

Adults (over 18 years) were invited to take part in the study (Fig. 1).
A faecal sample was received from 671 individuals but sixteen samples
were removed (n = 655) since they did not meet the read quality
control threshold set at 10,000 reads to ensure detection of low abun-
dance taxa [98]. The research was conducted under a Human Subjects
Protocol provided by an institutional review board (Ethical and In-
dependent Review Services, IRB Study #13044-03). All participants
provided informed consent and data were analysed anonymously. The
sample was 71% female and 29% male, with a mean age of 42 years.
Participants resided in twenty different countries and four continents,
predominantly North America (83%), with participants from USA ac-
counting for 77% of the sample. 11% of the study participants were
from Europe (4% from UK), 5% from Australasia and 2% from Asia.

2.2. Sample collection, processing and sequencing

The microbiome sequencing company uBiome provided participants
with their commercially available Gut Kit. Each participant was

Table 1 (continued)

Genus Change in abundance Behavioural trait/psychiatric condition Study subject References

Roseburia ↑ Autism Children [53]
↑ Stress Mice [61]
↓ Stress Mice [55]
↓ Negative mood Adults [62]
↓ Schizophrenia Adults [76]

Streptococcus ↓ Autism Children [53,60]
↑ Depression Adults [82]

Sutterella ↑ Autism Children [52,65,96,97]
↓ Autism Children [75]
↑ Stress Mice [55]

Turicibacter ↓ Autism Children [53]
↑ Sociability Mice [94]
↓ Stress Mice [70,72,94]
↑ Depression Adults [18]
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supplied with one kit to be used for faecal sample collection at home.
Analysis of faecal samples is the standard procedure in microbiome
research since they are sufficiently representative of the composition of
the gut microbiome [99]. The sampling procedure followed the
guidelines of the National Institutes of Health Human Microbiome
Project [100]. The sample collection tube contained a lysis and stabi-
lization buffer for DNA preservation during transport at ambient tem-
peratures [98]. The 16S rRNA gene was amplified using universal pri-
mers for the V4 hypervariable region and sequencing was performed on
the Illumina NextSeq 500 platform, alongside positive and negative
controls. Standardized methodology [98] for sample processing and
sequencing was conducted by uBiome and has been shown to generate
reproducible microbiome profiles [101].

2.3. Questionnaires

An online questionnaire designed for this study was distributed to
participants. In total, 44 study variables (continuous and categorical)
were analysed relating to behavioural traits, diet, health and lifestyle
and also sociodemographics. While the majority of variables were as-
sessed through binary questions or point scales, personality and social
behaviour were evaluated with widely used and validated ques-
tionnaires from psychological research. The 50-item International
Personality Item Pool [102] was used to assess personality traits ac-
cording to the five-factor model of personality. A large number of stu-
dies find that individual differences in human behaviour can broadly be
divided into five key domains, known as the ‘Big Five’ [103,104],
comprising extraversion (propensity to seek and enjoy others’ com-
pany), agreeableness (trust and cooperation in social interactions),
conscientiousness (attention to detail and focus), neuroticism (tendency
to feel negative emotions) and openness (creativity, intellectual curi-
osity and willingness to seek new experiences). These traits are tem-
porally stable within individuals [105] and are found in both sexes, all
races and across cultures [106]. In addition, the State–Trait Anxiety
Inventory [107], specifically the trait subscale, was used to determine
the participants’ general tendency to feel anxious. Participants were
also scored for two subscales (social skill and communication) from the
Autism Spectrum Quotient, which measures the degree to which any
neurotypical adultlies on the continuum between normality and
autistic-like behaviours [108]. Social network size was evaluated based
on the number of people in their two innermost layers, approximately
corresponding to those individuals contacted on a weekly and monthly
basis respectively [109].

Detailed dietary habits of the participants were assessed with the
EPIC-Norfolk Food Frequency Questionnaire [110]. The associated
software, Food Frequency Questionnaire EPIC Tool for Analysis [111],
was used to estimate total calorie consumption and intake of food
groups, macronutrients, minerals and vitamins (56 variables in total).
Food frequency questionnaires with more than ten missing entries were
excluded in accordance with the guidelines.

2.4. Multiple regression analyses of bacterial abundances

Microbiome count data are often overdispersed, with a high pro-
portion of zeros [112,113] and heavily right-skewed [114]. This is
because there are relatively few taxa that are shared by the majority of
samples, since most taxa are rare and only detected in a small pro-
portion of samples [112]. Given this overdispersion, count data cannot
be normalized via transformation and so negative binomial regression
was conducted with genus abundance as the response variable (or zero-
inflated negative binomial regression in cases where the count data
contained an excess of zeros). When modelling microbiome data, it is
necessary to account for variation in sequencing read depth between
samples. However, rarefying count data or transforming it into pro-
portions can lead to a high rate of false positives and is not re-
commended for analyses of taxon abundance [115]. Instead, the

logarithm of the total read number was included as an offset in the
regression models, thereby preserving statistical power by retaining all
the count data [112,116].

As opposed to the majority of microbiome studies which only con-
duct bivariate correlations between variables and microbial taxon
abundances, key variables known to influence the gut microbiome were
included in the regression models to avoid potential confounding ef-
fects. These variables were sex [117–120], age [117,121], body mass
index [117], birth delivery mode [120,122,123], type of infant feeding
method [118,120,124], whether participants had been treated with oral
antibiotics within the last six months (since studies suggest the gut
microbial community largely recovers after this time [125,126]),
whether they suffered from a gut condition [127,128] and if they took
probiotic supplements [36,129] (though evidence is somewhat lacking
as to the degree to which probiotic supplementation can alter faecal
microbiota composition [130,131]). These regression analyses could
only be conducted on a subset of the population cohort (n = 261) who
supplied the necessary data for all these variables.

The variables of primary interest were those relating to personality
traits. Pairwise Kendall’s Tau-b correlation coefficients were computed
to assess the correlation structure of all variables in the study, revealing
considerable intercorrelation between extraversion, social skill and
communication and also between neuroticism, anxiety and stress, as
expected from the literature [132,133]. To avoid multicollinearity in
the regression models, two new variables were therefore created by
summing the z-scores for the individual variables: sociability (a com-
bined score of an individual’s extraversion, social skill and commu-
nication) and neurotic tendencies (a combined score of an individual’s
neuroticism, anxiety and stress). These two new variables were used in
the regression analyses since social behaviour, anxiety, stress and de-
pressive-like behaviours are the main behavioural traits that have been
linked to the gut microbiome [134].

Negative binomial regression analyses were conducted using the R
package VGAM to model microbiome count data. All statistical analyses
in this study were performed using R 3.2.3 software [135]. An extensive
literature review was carried out to identify putative taxa that have
been associated with behavioural or psychiatric traits in animal re-
search or human populations. Genera that showed a significant asso-
ciation in at least two independent studies (Table 1) were then targeted
in the regression analyses. Genus-level count data were used for the
regression models since 16S rRNA sequencing provides an estimated
96% accuracy for genus identification [136] but has limited phyloge-
netic resolution at the species level [137].

2.5. Analyses of microbiome diversity and community composition

Analyses were also conducted to determine how the overall com-
positional profile of the microbiome, measured with alpha and beta
diversity metrics, was related to the study variables. Alpha diversity is
the ecological diversity of a single sample, taking into account the
number of different taxa and their relative abundances, while beta di-
versity measures differences in microbial community composition be-
tween individuals [138]. The R package phyloseq was used to de-
termine richness and alpha diversity at the genus level [139]. Since the
choice of diversity index can significantly influence results [140], both
Shannon’s diversity index and the inverse Simpson’s diversity index
were calculated (the inverse of Simpson’s index being more intuitive
since its value increases as diversity increases). While these two di-
versity indices take into account both richness and evenness, Shannon’s
diversity index is more sensitive to changes in abundance of rare taxa,
whereas the inverse Simpson’s diversity index gives more weight to
common taxa [141].

Since the correlation between sequencing depth and diversity was
not negligible, microbiome count data were rarefied prior to diversity
analyses by randomly sampling counts without replacement such that
all samples had an equal number of total counts. Although rarefying the
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count data was avoided for the regression models, it is still considered a
useful normalization technique when conducting diversity analyses as
uneven sequence counts across samples can significantly impact di-
versity estimates [113,116]. In terms of alpha diversity, associations
between each variable and either diversity or richness were measured
using Kendall’s Tau-b correlation coefficient. This method is appro-
priate since it is a non-parametric measure of correlation and also ac-
counts for tied values.

To assess beta diversity, permutational multivariate analysis of
variance (PERMANOVA) was conducted to determine which variables
significantly affect the overall composition of the gut microbiome.
Distance matrices were computed using the distance function in the R
package phyloseq [139] to assess the pairwise similarity of gut micro-
biome composition between individuals. The Bray–Curtis index pro-
vides a quantitative measure of dissimilarity between microbial com-
munities, while the Jaccard index is qualitative since it only takes into
account presence versus absence of taxa and not their abundances
[116]. PERMANOVA was carried out on both Bray–Curtis and Jaccard
distance matrices using the adonis function from the R package vegan
with 1000 permutations. This function estimates the variance in the
distance matrix that is attributable to the variable of interest, that is, the
extent to which each variable may explain differences between in-
dividuals in microbial community composition. The P values from these
analyses were then adjusted for multiple comparisons using the Ben-
jamini–Hochberg method to control for the false discovery rate (FDR),
with Padj < 0.1 considered statistically significant.

3. Results

3.1. Summary statistics

Gut microbiome composition differed markedly between in-
dividuals (Fig. 2), as has repeatedly been shown in human populations
[142]. Out of all the genera detected across the gut microbiome sam-
ples, the top twenty most abundant genera showed close correspon-
dence with previous research [143]. Bacteroides was the most abundant
genus, as found in other studies [144,145]. There was also considerable
variation among the study population in the variables assessed in the

questionnaire (Tables S1 and S2). The majority of study variables from
the questionnaire showed little to modest intercorrelation (Fig. S1),
though as expected there was a high degree of correlation between the
nutrient variables assessed in the food frequency questionnaire (Fig.
S2).

3.2. Regression models of bacterial abundances

Negative binomial regression analyses revealed that the abundances
for seven of the 23 genera were significantly predicted by individual
variation in behavioural traits (Fig. 3; Table S3). Sociability (a com-
bined measure of the participant’s extraversion, social skill and com-
munication) was a positive predictor of genus abundance for Akker-
mansia (P = 0.038), Lactococcus (P = 0.002) and Oscillospira
(P < 0.001), and a negative predictor of the abundances of Desulfo-
vibrio (P = 0.019) and Sutterella (P = 0.028). The variable assessing
neurotic tendencies (a combined measure of neuroticism, anxiety and
stress) negatively predicted genus abundance for Corynebacterium
(P < 0.001) and Streptococcus (P = 0.029). Table 2 compares these
bacterial genera found to be significantly related to behavioural traits
with the results of previous studies on these genera.

There were also notable results in terms of the possible confounding
factors included in the models. Age and body mass index were common
predictors of abundance, significantly predicting the abundances of
eight and seven genera, respectively. In contrast, birth delivery mode
and infant feeding method had little influence on the abundances of
most genera. Delivery mode was only a significant predictor of the
abundance of one genus, Flavonifractor, with a higher abundance in
individuals born by caesarean section. Formula feeding during infancy
was a positive predictor of Lactobacillus abundance, in agreement with
previous research findings [146]. Surprisingly, abundances of only
three of the 23 genera were significantly altered by antibiotic treatment
in the past six months, indicative of the differential effects antibiotics
can have on bacterial taxa. Three genera, Lactobacillus, Prevotella and
Streptococcus, were more abundant in females, which is consistent with
previous findings for Lactobacillus [120,147].

3.3. Microbiome diversity

Overall, 25 of the 44 study variables were significantly related to
gut microbiome diversity (Padj < 0.1), as measured by Shannon’s di-
versity index, with the majority of these (22 variables) also retaining
significance at FDR < 0.05 (Fig. 4; Table S4). For the primary vari-
ables of interest relating to behaviour, both stress (Padj = 0.045) and
anxiety (Padj = 0.077) were negatively correlated with Shannon’s di-
versity index, and agreeableness was also negatively related
(Padj = 0.048). There was a positive correlation between Shannon’s
diversity index and social network size (Padj = 0.043), such that in-
dividuals with a larger social network tended to have a more diverse gut
microbiome.

In terms of the other variables in the study, more adventurous eaters
and those who ate more foods with naturally occurring probiotics
(fermented foods) or prebiotics (non-digestible fibre) tended to have a
more diverse gut microbial community. In contrast, consumption of
probiotic supplements was significantly correlated with lower diversity.
Variables relating to ill health were generally associated with reduced
diversity and, not surprisingly, the strongest negative relationship was
with antibiotic treatment. Adults who were formula-fed as infants had a
significantly less diverse microbiome compared with those that were
breast-fed. There was also evidence that females had a lower gut mi-
crobiome diversity than males. Diversity was not related to exercise
frequency or body mass index, while the strongest positive correlation
was with general health. Microbiome diversity was positively corre-
lated with travel, while it was negatively related to dog ownership and
also unemployment.

Comparing the correlation results of Shannon’s diversity index and

Fig. 1. Overview of study design. A faecal sample was provided by each par-
ticipant using the commercially available uBiome Gut Kit and sample proces-
sing and sequencing were carried out by uBiome to generate OTU (operational
taxonomic unit) abundances. Participants were asked to complete a compre-
hensive study questionnaire assessing their behaviour, diet, health, lifestyle and
sociodemographics (see Fig. S1 for variables tested within each of these cate-
gories). A range of statistical analyses was conducted to determine the re-
lationships between gut microbiome composition and the study variables, with
a primary interest in the variables assessing behavioural traits.
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the inverse Simpson’s diversity index revealed good
consistencybetween the two indices (Table S4). Most of these re-
lationships were also present when correlating the variables with the
observed number of genera (Table S4), though as expected there were
some differences between the results since this is a measure of com-
munity richness rather than diversity. Notably, there was a significant
negative correlation between conscientiousness and genus richness
(Padj = 0.014), which was in the same direction as the non-significant
trend with diversity.

With respect to nutrient intake estimated from the food frequency
questionnaire, the consumption of fruit and cereals, and therefore fibre
(and more generally carbohydrates), was positively related to diversity
(Table S5). This was in accordance with previous findings that the
metabolism of carbohydrates, particularly fibre, promotes microbial
diversity [148–150]. Diversity was also significantly correlated with the
dietary abundance of a range of minerals and vitamins (Table S5).
There was little relationship between genus richness and nutrient intake
with the exception of fish consumption which was positively related.

3.4. Microbial community composition

Differences in the composition of the gut microbiome, as quantified
by the Bray–Curtis index, were significantly related to 28 of the 44
variables (Padj < 0.1), with most of these (22 variables) retaining
significance at FDR < 0.05 (Fig. 5; Table S6). While the P values re-
ported below refer to results with the Bray–Curtis index, the same
variables were also significant when using the Jaccard index to measure
differences in microbial community composition (Table S6).

Regarding behavioural traits, anxiety (Padj = 0.094) and stress
(Padj = 0.052) were significantly related to an altered microbiome
composition. Another factor influencing composition was whether the
participant suffered from a mental illness (Padj = 0.020). The majority
of variables assessing health and lifestyle were also significantly related
to composition, whereas there was no effect of early-life events (mode
of delivery, premature birth and infant feeding). While exercise fre-
quency did not significantly influence diversity, it did affect overall
composition of the gut microbiome, as has been shown in other studies
[151]. As was the case with diversity, unemployment was a significant
factor influencing microbial community composition. Composition also
differed by age and gender, in line with previous research [121].

All the main dietary variables were significantly related to compo-
sition (Fig. 5). Both gluten-free and dairy-free diets were associated
with an altered microbial community, in accordance with other re-
search findings [152–154]. The consumption of naturally occurring
prebiotic fibre showed the strongest relationship with gut microbiome
composition. In terms of the results of the food frequency questionnaire,
consumption of fruit, vegetables and cereals, and therefore the total
intake of carbohydrates including fibre, were all significantly related to
microbiome composition, as well as certain minerals and vitamins
(Table S7).

4. Discussion

Investigations of the microbiome–gut–brain axis have pre-
dominantly been conducted in animal models or clinical populations,
with few studies exploring whether these findings are translatable to
the general population. Here both gut microbiome composition and
diversity were found to be related to differences in personality. This is
the first time that abundances of microbial genera have been modelled
with respect to human personality, while also rigorously controlling for
the possible confounding effects of key variables known to influence the
gut microbiome. The regression results revealed that abundances of
particular genera are significantly related to behavioural traits, sug-
gesting that studying the gut microbiome may be relevant to under-
standing variation in human personality. People with larger social
networks were also found to have more diverse microbial

communities,indicating that social behaviour may promote diversity of
the human gut microbiome. By contrast, lower diversity was associated
with increased levels of stress and anxiety, and these traits were also
related to differences in overall composition of the microbial commu-
nity. In addition, the intercorrelation analysis (Fig. S1) revealed that
people who ate more foods with naturally occurring probiotics or pre-
biotics had significantly lower levels of anxiety, stress and neuroticism
and were also less likely to suffer from a mental illness, but this re-
lationship was not found in those consuming probiotics or prebiotics in
supplement form. Consistent with this, a previous study reported that
females consuming more fermented foods (a source of natural probio-
tics) had fewer symptoms of social anxiety [155] and similarly a tra-
ditional Japanese diet rich in fermented soy products has been linked to
reduced depressive symptoms [156].

The significant relationships between personality traits and the
abundances of particular genera targeted in the regression analyses
were largely in the expected direction based on studies in humans with
psychiatric conditions and in laboratory animals (Table 2). The genera
Akkermansia, Lactococcus and Oscillospira were found to be more
abundant in individuals with a higher sociability score. In accordance
with these results, previous studies in children have reported a reduc-
tion in Lactococcus and Oscillospira in autism, while one study found
decreased abundance of Akkermansia (Table 2). Oscillospira has also
been positively related to sociability in mice (Table 2). Interestingly,
both Akkermansia and Oscillospira are associated with good health;
Akkermansia has anti-inflammatory properties and there is some evi-
dence it may be protective against metabolic disorders [157] while
lower levels of Oscillospira are linked to inflammatory disease [158].
Two genera, Desulfovibrio and Sutterella, were more abundant in less
sociable individuals. This is in line with those studies finding that their
abundances are also elevated in people suffering from autism (Table 2)
and in fact, it has been hypothesized that Desulfovibrio species may play
an important role in the pathophysiology of autism [159]. The variable
measuring neurotic tendencies was a significant negative predictor of
the abundances of Streptococcus and Corynebacterium. Therefore, in-
dividuals that were more neurotic tended to have lower levels of these
genera. Since higher neuroticism is a known risk factor for developing
depression [160], this result is in agreement with a study in a rat model
of stress-induced depression reporting a reduction in Corynebacterium
(Table 2). However, in contrast to the findings here, Streptococcus has
previously been found to be more prevalent in adults suffering from
depression (Table 2). Although Streptococcus species are part of a
healthy microbiome, members of this genus can be opportunistic pa-
thogens [161].

The results of this study suggest that some bacterial genera may be
more strongly linked to behaviour and, in light of my findings, perhaps
future research may benefit from investigating the effects of the genera
Akkermansia, Desulfovibrio, Lactococcus, Oscillospira and Sutterella on
social behaviour and autistic-like symptoms in animal models, with a
view to developing potential new therapies for autism. Notably, not all
of the 23 genera targeted in these regression analyses were significantly
predicted by behavioural traits (Fig. S3; Table S3), though this was
expected given the somewhat inconsistent results reported in the lit-
erature (Table 1). In particular, despite extensive findings from animal
studies that species belonging to Bifidobacterium and Lactobacillus can
alleviate symptoms of anxiety, stress and depression, and also improve
social behaviour [42,162–169], abundances of these genera were not
significantly related to either sociability or neurotic tendencies in this
study. This may be because these regression analyses were conducted at
the genus level, yet there is some evidence that the behavioural effects
of Bifidobacterium and Lactobacillus may be species-specific and even
strain-specific [42,163].

Interpreting results from this study also requires consideration of
the bidirectional interactions between the gut microbiome and beha-
viour. As well as the behavioural effects of gut microorganisms, beha-
viour can in turn shape the composition of the gut microbiome. For
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example, the gut microbiome can affect the stress response and stress
also disrupts the gut microbiome [6,15]. In addition, there is growing
evidence that how an animal interacts socially can significantly influ-
ence its gut microbial community, whose composition is the product of
microbial immigration and competition throughout life via transmis-
sion of microorganisms, primarily through the faecal–oral route [170].
Research in wild primate populations has revealed that social contact
shapes gut microbiome composition [171–176] and studies in humans
find that we share gut microbiota with household members
[121,177–181]. A key research avenue is untangling the contributions
of specific microorganisms to social behaviour versus the influence of
social behaviour on microbial colonization. In at least some cases, mi-
crobial abundances may differ in relation to autistic traits or sociability
because certain taxa are better adapted for transmission between hosts.
Notably, the genus Oscillospira, whose abundance was positively pre-
dicted by sociability in this study, has also been found to be positively
related to host density in a wild animal population [182]. It is im-
portant to bear in mind, therefore, that some genera may be efficiently
transmitted socially, rather than having a causal effect on social be-
haviour. Indeed, Oscillospira belongs to the family Ruminococcaceae,
many of which are intestinal spore-forming bacteria, thereby

facilitating transmission between hosts [183]. In fact, numerous
members of the microbiota are well adapted for transmission and it is
estimated that at least half the bacterial genera in the gut are able to
produce resilient spores adapted for survival and dispersal [183].

The evidence of social transmission of microorganisms is particu-
larly relevant to the finding here that people with larger social networks
tend to have a more diverse gut microbiome. Indeed, animal studies
have revealed that social interactions are positively associated with
microbiome diversity [172,175,182,184]. For example, reduced social
contact in a bumblebee colony results in lower gut microbiome di-
versity [184] and chimpanzees that interact more socially have a more
diverse gut microbiome [172]. In fact, horizontal transmission of gut
microorganisms through chimpanzee social interactions appears to play
a greater role than vertical transmission from the mother in shaping gut
microbiome composition [172]. This suggests that although the mother
provides the primary inoculum for the newborn’s microbiome, the
composition of the microbiome through the individual’s lifetime may be
more strongly influenced by social interactions. The relationship be-
tween gut microbiome diversity and human social networks has not
previously been explored but the positive relationship found here sug-
gests that social interactions may also influence the microbiota of

Fig. 3. Coefficient plots from regression models predicting abundances of genera in the human gut microbiome. Asterisks denote significant predictors of genus
abundance where P < 0.05 and bars indicate 95% confidence intervals. The key variables of interest for this study were those relating to behavioural traits, namely
sociability (extraversion, social skill and communication) and neurotic tendencies (neuroticism, anxiety and stress), while other variables were also included to avoid
potential confounding effects. A positive relationship with gender indicates a higher abundance of the genus in females. Plots displayed here depict genera whose
abundances were significantly related to differences in behavioural traits (for remaining regression coefficient plots see Fig. S3).
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human societies. Interestingly, a study of gut microbiome composition
and temperament in infants reported an association between gut mi-
crobiome diversity and sociability [84]. By maintaining diversity of the
gut microbial community, social transmission of microorganisms may
benefit host health in numerous ways [170]. For example,diversity may
help to promote stability and resilience of the gut microbiome [142],
and is often linked to good health, though this is not always the case
[140]. Diversity can provide resistance against infection [185–188],
improve immune function [170] and may reduce the risk of allergies
[189]. It is well known that people with more social ties are healthier
and live longer, and reduced inflammation is postulated to play a role in
this relationship [190,191]. It is interesting therefore to speculate
whether the microbiome may mediate this association between social
integration and health, particularly since it is a key regulator of the host
immune response [192].

Participants who were more stressed or anxious, and also those
reporting poorer sleep quality, tended to have both a less diverse gut
microbiome and an altered composition. In line with these results, a
recent study found that anxiety status was related to stool consistency,
suggesting that anxiety may be associated with differences in gut mi-
crobiome composition, perhaps through inducing dysbiosis [193]. De-
pression has also been associated with differences in microbial com-
munity composition [194]. In addition, it has previously been shown in
animal studies that stress not only alters the abundances of various
microbial taxa but also reduces the diversity of the gut microbial
community [61,195]. In fact, part of the reason why individuals with a
larger social network have a more diverse microbiome may be because
social support can help buffer the adverse effects of stress on diversity
[196]. However, social network size was not significantly correlated
with stress in this study (Fig. S1) and the positive relationship between
network size and microbiome diversity is consistent with evidence from

animal populations that members of the microbiota are transmitted
through interactions with the social environment. Further research
should attempt to validate this finding and investigate the various mi-
crobial transmission routes and their relative importance. Indeed,
modern lifestyle choices are geared towards preventing pathogen
transmission but maybe we should instead consider ways to promote
the spread of beneficial microorganisms [170]. Notably, the negative
relationship found here between conscientiousness and genus richness
of the gut microbiome may be because conscientious people are more
likely to engage in hygienic behaviour [197], which may result in a
smaller number of microbial genera inhabiting the gut. The observed
relationship between sleep quality and gut microbiome composition
and diversity may be due to its intercorrelation with stress, anxiety and
neuroticism (Fig. S1) but may also partly reflect the known relationship
between the gut microbiome and host circadian rhythms [198].

Although the focus of this research was on personality traits, there
are also other novel findings of considerable interest from this study.
People who travelled frequently or visited more countries tended to
have a more diverse gut microbiome, suggesting that our interaction
with the environment does play a considerable role in influencing our
gut microbial community. This increased diversity may also partly re-
flect the different foods people tend to eat when travelling. However,
holidays abroad are also positively associated with the prevalence of
antibiotic resistance genes in the gut [199]. This suggests that although
travelling may increase the taxonomic diversity of the gut, it may also
increase the risk of acquiring antibiotic resistance. Another interesting
result not previously shown was that more adventurous eaters also had
a greater gut microbiome diversity, supporting the idea that micro-
biome health may be improved through a diverse diet [200]. This
finding is particularly pertinent given the increasingly restrictive
dietary habits of Western cultures and is also in agreement with a recent
study on a wild primate population which reported a positive associa-
tion between dietary diversity and microbiome richness [175].

Diversity of the gut microbiome was also related to the amount of
food people consumed containing natural probiotics and prebiotics.
Indeed, fermentation has been practised by human civilization for over
9000 years [201] and is traditionally used in many cultures in the
production of foods such as cheese, yogurt, sauerkraut and kimchi.
From an evolutionary perspective, fermented foods may represent
anadaptation passed on through generations, given their potential
beneficial effects on health. However, probiotic supplementation was
significantly associated with reduced microbiome diversity. A likely
explanation for this finding is that people with reduced microbiome
diversity (for example, due to a course of antibiotics or gut dysbiosis)
may be more inclined to take probiotic supplements. Indeed, while
there was no evidence of a relationship between probiotic consumption
and either antibiotic treatment or general health, probiotic supple-
mentation was positively correlated with having a gut condition (Fig.
S1).

There was no significant effect of delivery mode, premature birth or
infant feeding practice on microbial community composition, though
these factors may still influence establishment of the microbiome
during infancy, with potential consequences for development of the
immune system. However, regression results revealed that one genus,
Flavonifractor, was differentially abundant in those born vaginally
compared with caesarean section, with a higher abundance in in-
dividuals born by caesarean section. Notably, Flavonifractor has also
been found to be more abundant in infants with food allergies [202]
and birth by caesarean section is often linked to an increased risk of
allergies [203]. Although there is some evidence that birth by caesarean
section can affect the diversity and community composition of the in-
fant gut microbiome [120,122,123], other studies find that delivery
mode does not significantly influence development of the microbiome
[204–206] and no lasting differences (except Flavonifractor abundance)
were detected here in the adult population. However, individuals that
were formula-fed as infants did have a lower gut microbiome diversity.

Table 2
Bacterial genera found to be significantly related to behavioural traits in this
study compared with previous research findings extracted from Table 1. For
genera significantly related to sociability in this study, it is most relevant to
compare these findings to those from studies on sociability or autism (i.e. if
genus abundance is higher in sociable individuals, it may be expected to be
lower in autism). For genera related to neurotic tendencies it is most relevant to
compare these findings to those from studies on stress and depression. Results
from previous studies that are clearly in the opposite direction to the findings in
this study are marked in brackets.

Genus Change in
abundance

Behavioural
trait/psychiatric
condition

Study
subject

References

Akkermansia ↓ Autism Children [52]
[↑] Autism Children [53]
↓ Stress Mice [54,55]
↑ Sociability Adults This study

Corynebacterium [↑] Autism Children [56]
↓ Stress Rats [83]
↓ Neurotic

tendencies
Adults This study

Desulfovibrio ↑ Autism Children [60,80]
↓ Sociability Adults This study

Lactococcus ↓ Autism Children [53,60]
↑ Sociability Adults This study

Oscillospira ↓ Autism Children [53]
↑ Sociability Mice [94]
↓ Stress Mice [55,94,95]
↑ Sociability Adults This study

Streptococcus ↓ Autism Children [53,60]
[↑] Depression Adults [82]
↓ Neurotic

tendencies
Adults This study

Sutterella ↑ Autism Children [52,65,96,97]
[↓] Autism Children [75]
↑ Stress Mice [55]
↓ Sociability Adults This study
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This is the first time the effect of infant diet has been explored with
respect to the adult gut microbiome. Most research in infants actually
finds that formula feeding is associated with increased diversity com-
pared to breastfeeding [124], but results of a two-year longitudinal
study have shown that while formula-fed infants in their first year of
life may have higher gut microbiome diversity, breast-fed infants tend
to have higher diversity between one and two years of age [123].

Other notable results include females having a significantly lower
gut microbiome diversity compared to males. This contrasts a previous
human study which found no significant differences in diversity be-
tween the sexes [207] but is in the same direction as recent research in
a wild baboon population [174]. As expected, antibiotic treatment was
associated with reduced diversity of the microbiome and an altered
composition, in accordance with other findings [126,208–211]. Inter-
estingly, fish consumption was positively associated with genus rich-
ness of the gut microbiome, perhaps due to exposure to different bac-
terial genera inhabiting marine ecosystems. Somewhat surprisingly,
dog ownership was linked to lower diversity, which contrasts the
finding that infants living with household pets tend to have a more
diverse gut microbiome [212]. The reduced microbiome diversity of
people in unemployment may partly be a reflection of socioeconomic
status which can influence health through lifestyle behaviours, diet,
access to medical care and psychosocial factors such as stress [213].
With respect to other comprehensive population studies of the human
gut microbiome [204,194], the results here replicate previous findings

that age, gender, body mass index, sleep, constipation, gut conditions,
antibiotic treatment and consumption of fruit, vegetables and cereals
are related to gut microbiome variation.

As this study was cross-sectional, causation cannot be proved, par-
ticularly given the bidirectional nature of the microbiome–gut–brain
axis. As discussed, gut bacteria can affect behaviour and behaviour can
in turn influence the composition of the gut microbiome. Despite this
limitation, the findings here represent an important step in under-
standing the relationships between the gut microbiome and personality
traits, and the potential consequences for mental health. However, since
this is one of the first studies linking the gut microbiome to personality,
further research would help to confirm the reproducibility of these
findings. In addition, it should be borne in mind that there are nu-
merous factors that can affect personality. In particular, genetics ac-
count for approximately 50% of variation in personality, while a range
of environmental factors contribute to the remaining variation [1].
Since both host genetics and the environment are known to affect mi-
crobiome composition [214], it may be that some of the effects of genes
or the environment on personality are via their influence on the mi-
crobiome.

A key benefit of this study is that rather than examining the ex-
pression of extreme traits, as seen in psychiatric disorders, this research
focused on behavioural variation in the general population. The find-
ings reported here challenge the results of a recent study concluding a
lack of significant relationships between psychiatric measures in

Fig. 4. Bar plot showing results of Kendall’s Tau-b correlation analysis between gut microbiome diversity and the study variables. Opaque shading indicates a
significant correlation at FDR < 0.1 and asterisks denote significance also at FDR < 0.05. The negative relationship with gender reflects a lower diversity in
females compared with males. Plot depicts results with Shannon’s diversity index (for results using the inverse Simpson’s diversity index and genus richness see Table
S4).
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healthy humans and microbiome composition and diversity [215].
However, that research was based on a comparatively small sample size
and only involved female participants. Given the very exploratory
nature of their study, the researchers FDR-corrected their P values for
almost 4000 hypotheses which may have led to numerous false negative
results. As opposed to their conclusions that the gut microbiome may
only be relevant in cases of psychiatric illness, my findings suggest that
the microbiome may also be related to personality traits in the healthy
population. Indeed, the majority of the results were replicated when
anyone suffering from a psychiatric condition was excluded from the
dataset, showing that my findings were not driven by those scoring
towards the extreme end for the personality traits (Tables S8 to S10).
The only notable exception was for the beta diversity analyses, where
stress and anxiety were no longer significantly associated with differ-
ences in the overall community composition of the gut microbiome. The
majority of the regression results were also replicated, although the
positive relationship between sociability and Akkermansia abundance
was not detected. Additionally, there was evidence in this dataset that
Blautia was less abundant in more sociable individuals (P = 0.043) and
Prevotella was less abundant in more neurotic individuals (P = 0.002).

In conclusion, differences in gut microbiome composition and di-
versity are shown to be linked to personality traits in the general po-
pulation. The results of this study add a new dimension to our under-
standing of personality and are in line with accumulating evidence that
the gut microbiome can influence the central nervous system in hu-
mans, with effects on behaviour. Such findings may inform the devel-
opment of probiotic or prebiotic therapies to help improve mood and
treat conditions such as autism, anxiety and depression. Discovering
new and effective interventions for mental health conditions is of

pressing concern, given the declines in psychological health of our
modern society. Finally, it is pertinent to reflect on the ways in which
our modern-day living may provide a perfect storm for dysbiosis of the
gut. We lead stressful lives with fewer social interactions and less time
spent with nature, our diets are typically deficient in fibre, we inhabit
oversanitized environments and are dependent on antibiotic treat-
ments. All these factors can influence the gut microbiome and so may
be affecting our behaviour and psychological well-being in currently
unknown ways.
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